IG'Plasm

Sunday, January 22, 2012

How to Grow Alfalfa

By Ahmad Suhendra

Alfalfa is grown across a wide range of soil, water and climate conditions which challenges the management decision of growers to produce the highest quality and high yielding hay. Over the past decade, there has been a shift of alfalfa plantings from some of the fertile soils in the Central Valley to the more marginal soils once thought to be unsuitable for alfalfa. With these changes and the demand for higher quality and increased production, alfalfa growing requires a keen eye and ability to recognize signs or symptoms of problems that can cause significant production losses.

Intended for readers from Indonesia,..Please 
Cara menanam Alfalfa
Sebelum membudidayakan tanaman alfalfa, sebaiknya anda perlu mengetahui tekstur dan jenis tanah, pH, Salinitas, kandungan N, P, K dsb yang ada dalam tanah untuk menghitung berapa kebutuhan pupuk, kapur yang harus ditambahkan. Adapun cara persiapan dan penanaman alfalfa yang  kami lakukan pada jenis tanah regosol dan bertekstur sandy loam dengan pH 5-5,5 adalah sebagai berikut ( jika tidak ada data analisa tanah, maka kesuksesan budidaya sangat tergantung pada keberuntungan) :
  1. Buat lahan penanaman lihat gambar ( photo diambil tgl 10 Januari 2012)
  2. Di dalam lahan dengan jarak antar petakan 40 cm yang berupa parit sedalam 20 cm untuk drainase/ jalan orang.
  3. Taburkan kapur dolomit setara 4 ton/ha  (atau 0,4 kg/m2)  merata dipermukaan petakan, kemudian disiram air atau tunggu hujan turun biarkan selama 2-3 hari agar reaksi netralisasi berjalan dengan baik.
  4. Setelah tahap pengapuran, dianjurkan untuk diberi pupuk kandang ( yang sudah matang) sebanyak 1-1,5 kg/m2 ( 10-15 ton/ha)* dan aduk rata (Cangkul halus).
  5. Buat larikan sedalam 1-1,5 cm, lebar 3-5 cm dan jarak antar larikan 20 cm , sepanjang petakan.
  6. Siapkan biji alfalfa sebanyak = 1,38 gr biji per larikan sepanjang  4m, campur dengan pasir halus yg kering dengan perbandingan berat sekitar 1 : 30 = Alfalfa : Pasir,  kemudian aduk rata. Dalam 1,38 gr biji mengandung sekitar = 600 biji alfalfa, ( setara dengan kepadatan dalam 1 m2  , yang biasanya di gunakan oleh petani di Amerika )
  7. Tebarkan biji yg bercampur pasir tersebut kedalam larikan hingga habis  sepanjang larikan, kemudian tutup dengan tanah ( sekedarnya saja ).
  8. Berikan sejumlah pupuk SP36(36 % P2O5) = 250 kg/ha dan KCl(60% K2O)= 500 kg/ha, tempatkan pupuk dalam larikan yang dibuat disebelah kanan / kiri larikan dgn jarak 5 cm dari larikan biji alfalafa. Kemudian siram dengan air hingga jenuh (100 % kapasitas lapang).
  9. Jika tahapan diatas sudah dilakukan, maka disarankan untuk memberikan potongan rumput alang-alang / jerami ( 5 cm ) yang di tebarkan merata diatas permukaan petakan ( asal menutupi permukaan tanah) untuk menjaga kelembaban tanah.
  10. Perlu menjaga ketersedian air untuk perkecambahan alfalfa, dengan memperhatikan kelembaban pada permukaan tanah, jika cuaca panas dan tanah terlihat kering maka segeralah  di siram ,usahakan penyiraman pada pagi hari dan / atau sore hari, tergantung kebutuhan.
  11. Jaga tanaman alfalfa dari gulma minimal  60 hari setelah tanam, setelah itu gulma dapat biarkan saja karena pembersihan gulma akan memerlukan banyak tenaga dan biaya.
  12. Hama dan penyakit tanaman alfalfa cukup banyak, maka dalam perawatanya di anjurkan untuk bertanya pada penyuluh lapangan atau dinas pertanian setempat.
Note:
  • Selain penanaman cara diatas, ada juga penanaman dengan cara biji langsung ditebar diatas permukaan tanah yang telah diolah ( dosis kapur dan pupuk hampir sama). Kemudian di ratakan dengan mengunakan semacam sapu dari jerami.
  • Dengan cara tebar langsung  akan menghemat waktu dan ongkos penanaman tetapi agak susah dalam membersihkan gulma karena berbaur dengan tanaman alfalfa muda yg gampang tercabut ( sukar untuk di tanam kembali / mati) pada saat membersihkan gulma.
  • Baca tulisan lainya di blog kami, ttg alfafa untuk melengkapi informasi ini
  • Dengan membaca dan menerapkan tulisan ini, maka sukses atau tidak  adalah tanggung jawab anda.
)* Kandungan hara dari pupuk kandang padat/segar
No
Sumber Pupuk Kandang
Persentasi (%)
Kadar Air
Bahan Organik
N
P2O5
K2O
CaO
Rasio
C/N
1
Sapi
80
16
0,3
0,2
0,15
0,2
20-25
2
Kerbau
81
12,7
0,25
0,18
0,17
0,4
25-28
3
Kambing
64
31
0,7
0,4
0,25
0,4
20-25
4
Ayam
57
29
1,5
1,3
0,8
4,0
9-11
5
Babi
78
17
0,5
0,4
0,4
0,007
19-20
6
Kuda
73
22
0,5
0,25
0,3
0,2
24
Sumber: Pinus Lingga (1991)

Friday, January 13, 2012

Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures

By Yukie Okudera, Michiho Ito*

Calli and suspension cell culture were established from Aquilaria species whose resinous portion was called agarwood and used as medicine and incense. Four different strains of calli were analyzed for fragrant compounds such as sesquiterpenoids and chromone derivatives which were the major components of agarwood. Main sesquiterpenoids detected from calli were  a-guaiene,  a-humulene and  d-guaiene, and those of chromone derivatives were phenylethylchromones(AH3, AH4, AH5, AH6). Amount of these compounds differed among the four strains, indicating that Aquilaria plants may have variation in capacity for fragrant compound production. Incubation temperature analysis was also done from 20°C to 40°C and resulted that cell growth was the best at 25°C, whereas the amount of fragrant compounds was largest at 20°C.

Salicylic acid (SA) and methyl jasmonate (MJ) were added to calli and suspension cell culture respectively in order to induce production of fragrant compounds. Both SA and MJ apparently induced production of three sesquiterpenoids, aguaiene,  a-humulene, and  d-guaiene at early stage of treatment of SA or MJ, but did not induce that of chromone derivatives directly. Further studies of time course of chromone production and cell viability suggested that cell death may take part in chromone production, and that phenylethylchromones would be produced via oxydoagarochromones (OACs). These results indicate that sesquiterpenoids are synthesized in living cells, but chromone derivatives may be produced from debris of dying cells. 


Read More

Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
* E-mail: michihoi@pharm.kyoto-u.ac.jp Tel & Fax: +81-75-753-4506

Tuesday, January 3, 2012

Satoimo (Colocasia esculenta) can be used as an alternative food source

By Ahmad Suhendra

Satoimo ( Sato-imo) is the name given to taro root that grows wild and is cultivated in Japan. Its name means village potato. Common taro has a long rootstock with a shape similar to a sweet potato, whereas Satoimo is smaller and roughly rounded, with tapered ends. The taste and texture of the different varieties is similar. Taro Satoimo is rich in Hyaluronic Acid (HA), a substance produced naturally within our bodies in abundance when we are young. It promotes strong joints and produces natural collagen.[1]  It also contains potassium , phosphorus, Vitamins B1, B2 and C and Rich in fibers.[2] Taro is closely related to Xanthosoma and Caladium, plants commonly grown as ornamentals, and like them it is sometimes loosely called elephant ear.[2]

Generally, commercial taro producers apply a variety of fertilizers for improved yields. Nitrogen at 100 kg N/ha is often applied as urea or ammonium sulphate, in split applications at 5, 10 and 15 weeks after planting (WAP). Where necessary, 25 kg/ha phosphorus is applied at planting as superphosphate. If potassium is low, 100 kg/ha is split, with one application at planting and the other at 10 WAP. Compound NPK fertilizer (13:13:21) is recommended at 400 kg/ha, with half applied at planting and the other half at 10 WAP. Where available, poultry manure can be used at 10 tonnes/ha, applied two weeks before planting.[1]

Table.1

Proximate Composition of the Taro Corm on Fresh Weight Basis[3]
ComponentContent
Moisture63-85%
Carbohydrate13-29%
Protein1.4-3.0%
Fat0.16-0.36%
Crude fiber0.6-1.18%
Ash0.6-1.3%
Vitamin C7-9 mg/100 g
Thiamine0.18 mg/100 g
Riboflavin0.04 mg/100 g
Niacin0.9 mg/100 g
The main economic parts of the taro plant are the corms and cormels, as well as the leaves. The fresh weight composition of the taro corm is shown in Table 1. The fresh corm has about two-thirds water and 13-29 % carbohydrate. The composition of the carbohydrate fraction is shown in Table 2, indicating that the predominant carbohydrate is starch. The starch itself is about four fifths amylopectin and one-fifth amylose. The amylopectin has 22 glucose units per molecule, while the amylose has 490 glucose units per molecule. The starch grains are small and therefore easily digestible. This factor makes taro suitable as a specialty food for allergic infants and persons with alimentary disorders.

 Table.2
Percentage Composition of Taro Corm Carbohydrate[3]
Carbohydrate
Percentage(%)
Starch
77.9
Pentosans
2.6
Crude fiber
1.4
Dextrin
0.5
Reducing sugar
0.5
Sucrose
0.1

The taro leaf, like most higher plant leaves, is rich in protein. It contains about 23% protein on a dry weight basis. It is also a rich source of calcium, phosphorus, iron, Vitamin C, thiamine, riboflavin and niacin, which are important constituents of human diet.
Ref:
  1. FAO: Taro cultivation in Asia and the Pacific, 1999
  2. http://shizuokagourmet.wordpress.com/2009/12/26/vegetables-facts-and-tips-15-tarosato-imo/
  3. Onwueme,I.C.(1994).Tropical root and tuber crops-production, prespectives and future prospect. FAO Plant Production and Protection Paper 126,FAO,Rome.228p
  4. http://en.wikipedia.org/wiki/Taro



Sunday, January 1, 2012

Cotyledon Measure Influence to Growth of Ulin (Eusyderoxylon zwageri T. Et B) Seedling

By Lukman Hakim dan M.Anis Fauzi
(Balai Besar Penelitian Bioteknologi dan Tanaman Hutan)
Ironwood (Eusideroxylon zwageri) has bigger seed than among others tree species. This condition could make some difficulties in seed collecting, making nursery and seed transporting from seed collecting area to nursery. The aim of this research is knowing the correlation between Ulin seed length with stem and root length in nursery. The research used 4 provenances which each provenances have 15 seed sample so total sample seed 60 seed. Regresion analyze showed that seed length variable (X) versus stem length (Y1) has formula Y1= 9,601 + 0,446 X and seed length variable (X) versus root length (Y2) has formula Y1= 5,884 + 0,428 X. From both formula showed that seed length variable (X) are not significant to stemp length and root length variable.


Taro / Satoimo (Sato-Imo) Crop Prospects in Indonesia

By Ahmad Suhendra
On a national basis, taro is a very minor crop in Indonesia. It is much less important than rice, maize, soybean, cassava, peanut, mung bean or sweet potato. It is not surprising, therefore, that there are very few statistics available on Indonesian taro production and utilization.[1]

Early presence of  Taro/Satoimo  in Indonesia is on the Japanese occupation. Taro in Toraja society is known by the name " Talas Bithek", and in Buleleng Bali is known as "Talas Salak " because its clumps of tubers such as skin snake fruits (Salak) [3]

Taro does not require specific growing conditions. These plants can grow in different soil types with different soil conditions such as wetlands or dry land, so this plant would be grown in all regions in Indonesia.

Classification [5]
Kingdom : Plantae
    Order : Alismatales
         Family : Araceae
             Subfamily : Aroideae
                  Tribe : Colocasieae
                      Genus :Colocasia
                           Species : C. esculenta (L.) Schott
                               Variety : esculenta 
Trinominal name : Colocasia esculenta esculenta 

Ecology and Physiology [1]
  • Taro plants have a high requirement for moisture for their production. Normally, rainfall or irrigation of 1,500-2,000 mm is required for optimum yields.
  • Taro requires an average daily temperature above 21ºC (21ºC-27ºC [4]) for normal production. It cannot tolerate frosty conditions. Partly because of its temperature sensitivity, taro is essentially a lowland crop . (Yields at high altitudes tend to be poor). In Papua New Guinea, for example, the maximum elevation for taro cultivation is 2,700 m.
  • The highest yields for taro are obtained under full intensity sunlight. However, they appear to be more shade-tolerant than most other crops.
  • Taro does best in soil of pH 5.5-6.5. It is able to form beneficial associations with vesicular-arbuscular mycorrhizae, which therefore facilitate nutrient absorption.
  • One particularly useful characteristic of taro is that some cultivars are able to tolerate salinity. Indeed, in Japan and Egypt, taro has been used satisfactorily as a first crop in the reclamation of saline soils (Kay, 1973). This definitely opens up the possibility for the use of taro to exploit some difficult ecologies where other crops might fail.
Market opportunities
Currently in Japan, requires Taro/Satoimo about 360,000 tons per year (Otsubo, 1996), while the production capacity in Japan only 250,000 tons per year, due to limited land and climatic factors that are not allowed to farm throughout the year (JETRO, 1994). Satoimo supply shortage is the bulk imported from China to Japan, which reached approximately 55,000-60,000 tons (Japan Imports / Exports). Therefore, Japan still lacks satoimo supply about 40,000-45,000 tons per year. Indonesia has the potential to meet the shortfall to Japan, because Indonesia is an agrarian country with two seasons that can support agricultural activities throughout the year.[3]

Note :
When the Taro/Satoimo is cultivated properly it will produce about 30 tons / hectare and harvest at the age of 5-6 months or viewed from the leaves begin to turn yellow and wilt.[4]

Ref:
1.FAO: Taro cultivation in Asia and the Pacific, 1999
2.http://www.justhungry.com/how-cook-taro-root-or-satoimo
3.http://usahaku.weebly.com/satoimo.html
4.http://tanamanpangan.deptan.go.id/doc_upload/Talas.pdf
5.http://en.wikipedia.org/wiki/Taro